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Consequences of anisotropy �variation in orbital occupation� and magnetism, and their coupling, are ana-
lyzed for local-spin-density approximation �LSDA� plus interaction term U �LSDA+U� functionals, with both
the commonly used ones as well as less commonly applied functionals. After reviewing and extending some
earlier observations for an isotropic interaction, the anisotropies are examined more fully and related to use
with the local-density approximation or with the LSDA. The total energies of all possible integer configurations
of an open f shell are presented for three functionals, where some differences are found to be dramatic.
Differences between how the commonly used “around mean-field” �AMF� and “fully localized limit” �FLL�
functionals perform are traced to such differences. The LSDA+U interaction term, when applied self-
consistently, usually enhances spin magnetic moments and orbital polarization, and the double-counting terms
of both functionals provide an opposing moderating tendency �“suppressing the magnetic moment”�. The AMF
double-counting term gives magnetic states a significantly larger energy penalty than does the FLL counterpart.
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I. INTRODUCTION

Density-functional theory �DFT� and its associated local-
�spin-� density approximation �L�S�DA� are used widely to
describe the properties of a wide variety of materials often
with great success. However there exists a class of materials
which are poorly described, sometimes qualitatively, by
LDA. These so-called strongly correlated materials typically
contain atoms with open d or f shells, in which the corre-
sponding orbitals are in some sense localized. The LSDA
plus interaction term U �LSDA+U� approach was introduced
by Anisimov et al.1 to treat correlated materials as a modifi-
cation of LDA �“on top of LDA”� that adds an intra-atomic
Hubbard U repulsion term in the energy functional. Treated
in a self-consistent mean-field �“Hartree-Fock”� manner, in
quite a large number of cases the LDA+U result provides a
greatly improved description of strongly correlated materials.

At the most basic level, the LSDA+U correction tends to
drive the correlated orbital m occupation numbers nm� ��
denotes spin projection� to integer values 0 or 1. This in turn
produces, under appropriate conditions, insulating states out
of conducting LSDA states, and the Mott insulating state of
several systems is regarded as being well described by
LSDA+U at the band theory level. Dudarev et al.2 and
Petukhov et al.3 provided some description of the effect of
the spin dependence of two different double-counting terms
within an isotropic approximation. Beyond this important but
simple effect, there is freedom in which of the spin orbitals
�m�� will be occupied, which can affect the result consider-
ably and therefore makes it important to understand the ef-
fects of anisotropy and spin polarization in LSDA+U. After
the successes of providing realistic pictures of the Mott in-
sulating state in La2CuO4 and the transition-metal
monoxides,1 the anisotropy contained in the LSDA+U
method produced the correct orbitally ordered magnetic ar-
rangement for KCuF3 that provided an understanding of its
magnetic behavior.4

The anisotropy of the interaction, and its connection to the
level of spin polarization, is a topic that is gaining interest
and importance. One example is in the LSDA+U description
of the zero-temperature Mott transition under pressure in the
classic Mott insulator MnO. The first transition under pres-
sure is predicted to be5 an insulator-insulator �not insulator-
metal� transition, with a S= 5

2 →S= 1
2 moment collapse and a

volume collapse. The insulator-to-insulator aspect is surpris-
ing, but more surprising is the form of moment collapse:
each orbital remains singly occupied beyond the transition,
but the spins of electrons in two of the orbitals have flipped
direction. This type of moment collapse is totally unantici-
pated �and hence disbelieved by some�, but it is robust
against crystal structure �occurring in both rocksalt and NiAs
structures� and against reasonable variation in the interaction
strength. Detailed analysis indicates that it is a product of the
anisotropy of the LSDA+U interaction and the symmetry
lowering due to antiferromagnetic order.

Another unanticipated result was obtained6 in LaNiO2,
which is a metal experimentally. This compound is also a
metal in LSDA+U over a very large range of interaction
strength U rather than reverting to a Mott insulating Ni1+

system which would be isovalent with CaCuO2. For values
of U in the range expected to be appropriate for the Ni ion in
this oxide, the magnetic system consists of an atomic singlet
consisting of antialigned dx2−y2 and dz2 spins on each Ni ion.
Again the anisotropy of the interaction evidently plays a cru-
cial role in the result, with its effect being coupled thor-
oughly with band mixing effects.

The addition of a Hubbard U interaction also introduces
the need for “double-counting” correction terms in the en-
ergy functional to account for the fact that the Coulomb en-
ergy is already included �albeit more approximately� in the
LSDA functional. All double-counting schemes subtract an
averaged energy for the occupation of a selected reference
state depending only on �N��, which largely cancels the iso-
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tropic interaction of the EI term �2�. Several forms for these
double-counting terms have been proposed1,7,8 but primarily
two are commonly used. These LDA+U functionals are
most often referred to as around mean field �AMF� and the
fully localized limit �FLL�, which is also referred to as the
atomic limit �AL�. The distinctions between these forms
have attracted some discussion but without consideration of
the full anisotropy of the interaction.

The need for double-counting corrections is not unique to
the LDA+U method; any other method that adds correlation
terms to the LSDA functional, such as the dynamical LDA
+DMFT �dynamical mean-field theory� approach, will also
require double-counting corrections. This is an unfortunate
consequence of LDA’s success; LDA works too well, even in
correlated systems where it usually gets interatomic charge
balance reasonably, to just throw it away.9 The common ap-
proach has been to use LSDA for correlated materials and to
include a double-counting correction. There are techniques
being developed which do not build on a correction to DFT-
LDA, but it remains to be seen whether these approaches
will be successfully applied to a broad range of solid-state
materials.

Although there has been much study on the performance
of these LDA+U functionals in the context of real materials,
and an early review of the method and some applications
was provided by Anisimov et al.10 relatively little has been
done to understand, qualitatively and semiquantitatively, how
the functionals operate based solely on their energetics dis-
tinct from DFT-LSDA effects. In this paper we analyze the
functionals that are commonly used, as well as others which
were introduced early on but are not so commonly used.
Some of the nomenclature in the literature are confusing, so
we try to clarify these confusions where we can.

II. LSDA+U CORRECTION �E

The LDA+U functional is usually coded in a form in
which the choice of coordinate system is irrelevant, often
referred to as the rotationally invariant form.4 This form in-
volves Coulomb matrix elements that have four orbital indi-
ces and the orbital occupation numbers are matrices in or-
bital space �viz. nmm��. One can always �after the fact� rotate
into the orbital Hilbert space in which the occupations are
diagonal, in which case the interactions have only two indi-
ces. In our discussion we will work in the diagonal represen-
tation.

The LDA+U functionals considered here can all be writ-
ten in the form

�E = EI − Edc, �1�

where the direct interaction is

EI =
1

2 �
m��m���

Wmm�
��� nm�nm��� �2�

and Edc is the double-counting correction. The Coulomb ma-
trix elements are given in terms of the direct and �spin-
dependent� exchange contributions as

Wmm�
��� = �Umm� − Jmm���,��� . �3�

By the convention chosen here, EI and Edc are both positive
quantities as long as the constants U and J �which define the
matrix elements Umm� and Jmm� but are not the same� are
chosen conventionally, with U much larger than J.

Note that the orbital+spin diagonal term has been omitted
in Eq. �2�; there is no self-interaction in EI. However, it is
formally allowed to include the diagonal “self-interaction”
term because the matrix element vanishes identically �self-
interaction equals self-exchange: Umm=Jmm� and it can sim-
plify expressions �sometimes at a cost in clarity� if this is
done. The double-counting correction depends only on the
orbital sum N�, which appears up to quadratic order. A con-
sequence is that it will contain non-vanishing terms in
nm�nm� which are self-interactions. Thus while the LSDA
+U method was not intended as a self-interaction correction
�SIC� method, it is not totally self-interaction free. In fact,
the underlying LSDA method also contains self-interaction,
and the double-counting term may serve to compensate
somewhat this unwanted effect. We discuss self-interaction at
selected points in this paper.

A. Short formal background to the LSDA+U method

The “LSDA+U method” is actually a class of functionals.
Each functional has the same form of interaction EI, with
differences specified by

�1� Choice of the form of double-counting term.
�2� Choice of constants U and J. For a given functional,

these are “universal” constants such as � ,m ,e; i.e., they are
not functional of the density in current implementations. Pos-
sibilities for doing so, that is, determining them self-
consistently within the theory, have been proposed.11

�3� Choice of projection method to determine the occupa-
tion matrices from the Kohn-Sham orbitals. Given identical
choices for �1� and �2� above, there will be some �typically
small� differences in results from different codes due to the
projection method.

The occupation numbers �or, more generally, matrices�
are functionals of the density, nm����, through their depen-
dence on the Kohn-Sham orbitals. Then, whereas in LSDA
one uses the functional derivative

LSDA:
�ELSDA���s��

����r�
�4�

in minimizing the functional. In LSDA+U the expression
generalizes to

LSDA + U:
��ELSDA���s�� + �E��nms��s����

����r�
. �5�

Since the resulting spin densities �s are changed by including
the �E correction, the change in energy involves not only
�E but also the change in ELSDA. In practice, there is no
reason to compare ELSDA+U with ELSDA as they are such dif-
ferent functionals. However, in the following we will be as-
sessing the importance of the choice of the double-counting
term in the LSDA+U functional, and it is of interest to com-
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pare, for fixed U and J, the energy differences between
LSDA+U functionals differing only in their double-counting
terms in order to understand the differing results. Even if the
set of occupation numbers turn out to be the same �a situa-
tion we consider below�, the densities �� will be different
and the differences in ELSDA may become important.

As with the nonkinetic-energy terms in ELSDA, the func-
tional derivatives of �E lead to potentials in the Kohn-Sham
equation. These are nonlocal potentials, which �via the same
projection used to define the occupation numbers� give rise
to orbital-dependent �nonlocal� potentials

vm� �
��E

�nm�

= vm�
I − vm�

dc ,

vm�
I = �

m����m�

Wmm�
��� nm���. �6�

The double-counting orbital potential is discussed later.
The corresponding contribution to the eigenvalue sum

Esum is

�Esum = �
m�

vm�nm�, �7�

which is subtracted from the eigenvalue sum to obtain the
Kohn-Sham kinetic energy. However, there are indirect ef-
fects of the orbital potentials that affect all of the kinetic and
�LSDA� potential energies; these will be different for differ-
ent �E functionals because the orbital potentials, which de-
pend on the derivative of �E and not simply on the values of
nm�, differ for each functional. This makes it necessary, for
understanding the effects of the �E correction and the
change in energy, to analyze the orbital potentials. We pro-
vide a brief discussion in Sec. V.

B. Fluctuation forms of LSDA+U

First we consider the class of functionals that can be writ-
ten in what is termed here as a fluctuation form. The original
LDA+U functional was introduced in 1991 by Anisimov et
al.1 and was written as

�EFl-nS =
1

2 �
m��m���

Wmm�
��� �nm� − n̄��nm��� − n̄� , �8�

where n̄=Ncorr /2�2l+1� is the average occupation of the cor-
related orbitals. �Henceforth N�Ncorr.� Note that the energy
is changed only according to angular “fluctuation” away
from the �spin-independent� angular average occupation.
This form is properly used with LDA �the “LDA averages” n̄
are the reference� and not LSDA. This form was originally
advocated with generic �U−J��,��� matrix elements instead

of the full Coulomb matrix, but we use the full Wmm�
��� here for

comparison with other functionals.
In 1994, Czyzyk and Sawatzky8 introduced a change to

Eq. �8� and also proposed a new functional. The motivation
for changing Eq. �8� was to use an LSDA exchange-
correlation �xc� functional to treat spin-splitting effects rather
than LDA. This change motivated the following equation:

�EFl-S =
1

2 �
m��m���

Wmm
����nm� − n̄���nm��� − n̄��� = �EAMF,

�9�

where n̄�=N� / �2l+1� is the average occupation of a single
spin of the correlated orbitals. Here the energy correction is
due to angular fluctuations away from the spin-dependent
angular mean and hence must be used with LSDA. We point
out that the authors in Ref. 8 refer to Eq. �8� as ELDA+AMF

and Eq. �9� as ELSDA+AMF. This wording may have caused
subsequent confusion due to the way these terms have come
to be used, and also because a discussion of the “+U” func-
tionals requires explicit specification of whether LDA or
LSDA is being used just to understand which functional is
being discussed. Also confusing is that Solovyev et al.12 re-
justified Eq. �8� using “atomic limit” terminology.

The fluctuation forms of LSDA+U are automatically
particle-hole symmetric since nm�→1−nm� and n̄�→1− n̄�

gives nm�− n̄�→−�nm�− n̄�� and the expression is quadratic
in these fluctuations. The general form of Eq. �1� need not be
particle-hole symmetric.

Many authors �present authors included� have used the
term LDA+U where the term LSDA+U would be more ap-
propriate, which is especially confusing when discussing the
AMF functional. We choose to depart from this confusing
nomenclature by giving Eqs. �8� and �9� unique names speci-
fying their fluctuation forms and their connection to LSDA
�Fl-S� or to LDA �Fl-nS�. We collect the double-counting
terms for the various functionals, along with their connection
to LDA or LSDA, in Table I.

C. FLL functional

The second functional introduced by Czyzyk and
Sawatzky8 is the FLL functional. �A J=0 version of FLL was
introduced in 1993 by Anisimov et al.7� The authors referred
to it �confusingly, as terminology has progressed� as the
around mean-field functional but the atomic limit double-
counting term; in the literature it is now referred to as the
atomic limit or FLL functional. This functional cannot be
written in the fluctuation form of the previous two function-
als �the fluctuation form is exhausted by the -S and -nS
cases�. The FLL functional is written in the form �1�, with
the double-counting term given in Table I.

There is yet another LDA+U functional that is available,
which was introduced in 1993 by Anisimov et al.7 There is
no clear name for it, but since it can be obtained by using
N�=N /2 in Edc for FLL, one might consistently refer to it as
FLL-nS, corresponding to FLL with no spin dependence.
The authors in Ref. 7 indicate that this functional is to be
used with LDA, in accordance with the lack of spin depen-
dence in the double-counting term.

D. Implementation of LSDA+U in some widely used codes

The Fl-nS functional is implemented in the WIEN2K code,
as nldau=2, and called HMF �Hubbard in mean field�;13

however, it is apparently not often used. The Fl-S �AMF�
functional is implemented in the WIEN2K code13 as nldau=0
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and the FPLO code14 as AMF. It is also available in the ABINIT

code15 when using a PAW basis set16 by setting usepawu
=2.

The FLL functional is implemented in several general-
purpose DFT codes such as WIEN2K �nldau=1�,13 FPLO �se-
lect AL in fedit�,14 VASP, PW/SCF, and ABINIT �usepawu=1�
when using a PAW basis set. The FLL-nS functional is avail-
able in VASP.

E. General remarks

When the Fl-nS and Fl-S functionals are written in their
fluctuation form, there is no separate double-counting term;
hence, one does not need the double-counting interpretation.
They can of course be expanded to be written in the “inter-
action minus double-counting” form �2�, which is useful es-
pecially for comparing with functionals that can only be
written in that form. A comparison of the double-counting
terms is given in Table I. Reducing all to interaction minus
double-counting form makes the difference between the
functionals most evident. Since they all have the same
“direct-interaction” term, the only difference between the
functionals is what double-counting energy is used; the un-
interesting tail seems to be wagging the exciting dog, which
is in fact the case. The double-counting terms can be reduced
to dependence only on N and N� thanks summation rules
�there is at least one free index� on the Umm� and Jmm� ma-
trices,

�
m

Umm� = �2l + 1�U �10�

�
m

Jmm� = U + �2l�J , �11�

that is, the sum over any column �or row� of the U and J
matrices is a fixed simple value, which depends on the input
parameters U and J. One can then simply see that a sum over
a column of W is �2l+1�U if ���� and 2l�U−J� if �=��.

The Umm� and Jmm� matrices satisfy, by definition, Umm
−Jmm=0, so that there is no self-interaction, whether or not
the �vanishing� diagonal term m�=m��� is included in the

interaction term. As mentioned earlier, the following analysis
assumes that the occupation matrix has been diagonalized.
While this can always be done, the transformed matrix ele-
ments Umm� and Jmm� will not be exactly what we have used
in Sec. VI.

III. ANALYSIS OF THE FUNCTIONALS

A. J=0 simplification

It is not uncommon for practitioners to use “effective”

values Ũ=U−J , J̃=0 and insert these constants �for U ,J�
into LDSA+U. For J=0, of course Hund’s coupling �intra-
atomic exchange� is lost, but J also controls the anisotropy of
the interaction, and for J=0 anisotropy also is lost �Umm�
�U as well as Jmm��0 for m�m��. This case is relatively
simple. It seems that it should provide the “big picture” of
what LSDA+U does with simple Coulomb repulsion, and it
has been discussed several times before. With J=0, the fluc-
tuation functionals simplify to

�EJ=0
Fl-� =

U

2 �
m��m���

�nm��nm���

=
U

2 	
�m�

�nm��2
− �

m�

��nm��2�
= −

U

2 �
m�

��nm��2

� −
U

2
��

2 	 0, �12�

because the sum of fluctuations vanishes by definition for
either form �=nS or S; note the “sign change” of this ex-
pression when the diagonal terms are added, and subtracted,
to simplify the expression. Here �2 is the sum of the squares
of the fluctuations bounded by 0	��

2 	N. For integer occu-
pations the energy corrections for Fl-nS and Fl-S �AMF� can
be written as

�EJ=0
Fl-S = −

U

2
	N�1 − n̄� −

M2

2�2l + 1�� ,

TABLE I. The double-counting terms of various LDA+U functionals. In the second expression two of
them are rewritten to reflect how they are �somewhat deceptively� identical in form, but in one case a
distinction between spin up and spin down �relative to half of N: N�↔N /2� is made. Note that while the first
two forms appear to contain an isotropic self-interaction � 1

2UN2 rather than 1
2N�N−1�� they are derived from

a form which explicitly has no self-interaction between the orbital fluctuations �M�. See text for more
discussion.

LDA+U
Functional Edc=Edc �rewritten�

DFT xc
Functional

Fl-nS 1
2UN2− U+2lJ

2l+1
1
4N2= 1

2UN2− U+2lJ
2l+1

1
2��� N

2 �2 LDA

Fl-S �AMF� 1
2UN2− U+2lJ

2l+1
1
2��N�

2 = 1
2UN2− U+2lJ

2l+1
1
2��N�

2 LSDA

FLL

1
2UN�N−1�− 1

2J��N��N�−1�= 1
2UN�N−1�

− 1
2J���N�

2 −N�� LSDA

FLL-nS

1
2UN�N−1�− 1

4JN�N−2�= 1
2UN�N−1�− 1

2J���� N
2 �2

−N�� LDA
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�EJ=0
Fl-nS = −

U

2
N�1 − n̄� . �13�

There are two things to note here.
1. In Fl-nS, the energy is independent of both the spin and

orbital polarization of the state, which lacks the basic objec-
tive of what LSDA+U is intended to model. Considering the
form of its double-counting term �see Table I� with its self-
interaction term �proportional to N2�, Fl-nS for J=0 becomes
simply a self-interaction correction method.

2. In Fl-S �AMF�, configurations with magnetic moments
are energetically penalized proportionally to U and quadrati-
cally with M. In Secs. V and VI we will discuss the partial
cancellation with the LSDA magnetic energy.

Under the same conditions, the FLL functional becomes

�EFLL =
U

2 �
m�

nm��1 − nm�� 
 0. �14�

Solovyev et al.12 noted the important and easily recognizable
characteristics of this expression. Besides being non-
negative, for integer occupations the energy vanishes. It is a
simple inverted parabola as a function of each nm�. From the
derivative, the orbital potentials are linear functions of nm�,
with a discontinuity of U when nm� crosses an integer value.
These characteristics underlie the most basic properties of
the LSDA+U method: integer occupations are energetically
preferred, and discontinuities in the potentials model realis-
tically the Mott insulator gap that occurs in strongly interact-
ing systems at �and only at� integer filling.

B. JÅ0 but isotropic

Simplification of the full expression for functional results
by separating out the isotropic parts of the interaction,

Umm� = U + �Umm�, �15a�

Jmm� = U�mm� + J�1 − �mm�� + �Jmm�. �15b�

The isotropic parts simplify, giving

�EFl-nS = −
U − J

2 �
m�

nm�
2 −

J

4
M2 +

U − J

2
Nn̄ + �Eaniso,

�16�

�EFl-S = −
U − J

2 �
m�

nm�
2 +

U − J

4

M2

2l + 1
+

U − J

2
Nn̄ + �Eaniso,

�17�

�EFLL = −
U − J

2 �
m�

nm�
2 +

U − J

2
N + �Eaniso, �18�

with the universal anisotropy contribution

�Eaniso =
1

2 �
mm����

�Wmm�
��� nm�nm���, �19�

�Wmm�
��� � �Umm� − �Jmm�����. �20�

being the anisotropic part of the interaction matrix elements.
These equations, up to the �W term, are the extensions of
Eq. �13� to include isotropic exchange in explicit form.

The first term in each of these expressions contains

− 1
2Ũnm�

2 �Ũ�U−J� and hence has the appearance of a self-
interaction correction. Since the diagonal term of the inter-
action EI is specifically excluded, it does not actually contain
any self-interaction; in fact, the sign of the interaction EI is
positive. �The double-counting term does contain terms qua-
dratic in N which must be interpreted as self-interaction.�
Nevertheless, the rewriting of the functional leads to a self-
interaction-like form and that part of the functional will have
an effect related to what appears in the self-interaction-

corrected LDA method, but by an amount proportional to Ũ
rather than a direct Coulomb integral, depending on the dif-
ference of nm� from the reference occupation �see Sec. IV�.

C. Fl-nS

For Fl-nS, if we are restricted to integer occupations �so
nm�

2 =nm��, then �2 depends only on N, so the first term in
�EFl-nS above depends only on N. Then, up to corrections in
�U and �J, the state with the largest total spin moment will
be favored; this is Hund’s first rule. In fact, even with the �U
and �J terms, the −JM2 /4 term is still strongly dominant.
Except for N=7, there are many ways to arrange electrons in
orbitals which maximize S. Energy differences between these
arrangements arise only from anisotropy ��U and �J� and
spin-orbit �SO� coupling.

D. Fl-S

In Fl-S, instead of having the −JM2 /4 term from Fl-nS
which favors magnetism, there is a term �U−J�

4�2l+1� M
2 which

opposes magnetism. This term �as in the J=0 case� comes
from the occupation variance which wants to evenly distrib-
ute electrons across both spin channels. Within LSDA there
is something like a Stoner term of the form − 1

4 IM2 which
will compete with this Fl-S magnetic penalty. We return to
this aspect in Secs. IV–VII and in the Appendix.

E. Spin-orbit coupling and particle-hole symmetry

Without spin-orbit interaction, for a given N there are
many states that are degenerate for both double-counting
schemes. Every value of N has at least four degeneracies
those with �Lz , �Sz.

Any state which has the same number of spin-up as spin-
down electrons �M =0� gives the same energy from Fl-nS
and Fl-S; since then n̄↑= n̄↓= n̄ �the orbital potentials are dis-
tinct however�. Of course this fixed N ,M =0 specification
may contain many different configurations. Looking at re-
sults mentioned later, for Fl-S the ground state for an even
number of electrons is Sz=0 �so n̄�= n̄�; thus, the configura-
tion which gives the Fl-S ground state has the same energy in
Fl-S and Fl-nS.
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IV. FRACTIONAL OCCUPATIONS

Here we briefly discuss the effect of noninteger occupa-
tions in LSDA+U. Taking a general set of occupations as
�nm��, we define a set of integer occupations �n̂m�� and the
fractional part of the occupations as �m�=nm�− n̂m�. For il-
lustration purposes we will choose the simplest possible sce-
nario, where charge is transferred to an empty orbital a from
an occupied orbital b both of the same spin, so that 0
�a↑
=−�b↑, n̂a↑=0, and n̂b↑=1. With this selection, N� is un-
changed �and therefore N and M as well�, so that Edc is
unchanged. Thus, the effect of the charge transfer is entirely
contained in the EI term. Expanding EI for the general occu-
pation set gives

EI��nm��� − EI��n̂m��� = U�a↑�1 − �a↑� �21�

for the J=0 case, and for J�0 we find

EI��nm��� − EI��n̂m��� = �
m�

�Wam
↑� − Wbm

↑��n̂m��a↑ − Wab
↑↑�a↑

2 .

�22�

The dominant term in Eq. �22� is where m�=b↑. This

term gives a contribution Wab
↑���a↑
U�a↑ �since U�J for

typical parameter choices, where other terms give contribu-
tions proportional to �Wam

↑� −Wbm
↑���a↑�J�a↑. The term with

m�=a↑ is killed off by the factor of n̂a↑ and the term in �2 is
significantly smaller than the others for �
0.5.

This shows that there is an energy penalty for fractional
occupation proportional to U and linear in � at small �.
Thus, in configuration space, the LSDA+U functionals have
many local minima around configurations with integer occu-
pations. This result is fairly general. Even for charge transfer
between orbitals of opposite spins, the linear energy penalty
in � is still dominant over any additional terms coming from
the double counting or spin-orbit.

In practice, this gives the possibility that LSDA+U will
get “stuck” in a local minimum with some configuration that
may not be the true ground state. This behavior is not un-
common; LSDA+U has been reported17 to find multiple lo-
cal minima depending on the starting configuration.

V. ORBITAL POTENTIAL MATRIX ELEMENTS

Up to now only the energy functionals themselves were
discussed. Now we return to the derivatives: the orbital po-
tentials vm�. It is simple to derive the exact expressions, and
the interaction term EI common to all forms gives a potential
�vm� which depends only on the occupations of the other
orbitals nm��� ,m����m�. The potential resulting from the
double-counting term is functional specific and may contain
a contribution from nm� itself, i.e., a self-interaction.

We confine our observations here to the subdivision �in-
troduced just above� of the interaction into a unitarily invari-
ant isotropic part and into an anisotropic part �2� that is much
smaller and more difficult to analyze. As for the energy itself,
it is convenient to add and subtract the diagonal self-
Coulomb and self-exchange, which makes the effect of the
potential much more transparent at the cost of introducing
the misleading self-interaction interpretation.

The potential matrix elements are

�vm�
Fl-nS = − �U − J��nm� − n̄� −

J

2
M� + �vm�

aniso, �23�

�vm�
Fl-S = − �U − J��nm� − n̄�� +

U − J

2

M

2l + 1
� + �vm�

aniso,

�24�

�vm�
FLL = − �U − J�	nm� −

1

2
� + �vm�

aniso, �25�

with the anisotropic potential term

�vm�
aniso = �

m���

�Wmm�
��� nm���. �26�

The main-occupation-number-dependent term, proportional
to nm�, has a self-interaction appearance and effect, as dis-
cussed above for the functionals. The differences in this term
arise from the “reference” occupation with which nm� is
compared to determine the potential shift. The fluctuation
nm�−nref is smaller for Fl-S �AMF� than for Fl-nS because
the occupation for a given spin direction tends to be closer to
n̄� than to n̄. The reference occupation for FLL is, like Fl-ns,
spin independent; in fact, the reference is half filling. In this
sense, FLL seems more like a single-band Hubbard model
treatment than the other two functionals.

The other difference that is evident in this form is the spin
dependence. Fl-nS additionally has a spin-orientation-
dependent potential shift proportional to J and to M �similar
to an LSDA treatment but using J instead of the Stoner I� and
enhances spin splitting of the eigenenergies � accordingly. In
Fl-S �AMF� the analogous term is +�U−J� M

2�2l+1��, with a
sign that impedes magnetism. It can be simplified to � J

2 M�
when U�2�l+1�J. This expression illuminates the reason
that AFM is sometimes found to decrease the magnetic mo-
ment. This term more or less cancels the spin splitting of
LSDA due to the opposite sign. What is left is a splitting of
occupied and unoccupied levels due to the nm� term, which
is almost independent of M. The effect is to support a spin-
polarized solution but to provide little discrimination be-
tween different M. Since the spin-polarization energy does
not favor large M, we end up with a tendency of a near
degeneracy of different M values, as we already pointed out
from purely energetic arguments. For the case of a half-filled
fully polarized shell nms=��,1 �the case of N=M =7 in Sec.
VI�, the potential matrix vanishes, which can be seen from
n̄= 1

2
M

2�2l+1� = n̄= 1
2 . However, at the same time the energy con-

tribution also vanishes �EFl-S=0 �for integer occupations�
and the Fl-S functional has no effect at all.

The SIC term in FLL splits occupied and unoccupied
states symmetrically, while in the fluctuation functionals the
splitting happens with respect to the averaged occupation,
which is seen in the overall energy positions in Fig. 3.

VI. NUMERICAL RESULTS

Following common terminology, for the remainder of the
paper we refer to the Fl-S functional simply as the AMF
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form. We have taken values for Umm� and Jmm� �used for Eu�
from Ref. 18 �recalculated to include more significant fig-
ures�. These matrices are generated using U=8 and J=1
�values typical of rare earths� following the procedure given
in the appendix of Ref. 8.

In our analysis of the AMF and FLL functionals, which
are based on an LSDA reference state, we include a Stoner
term

E�M� = −
1

4
IM2 �27�

to model the magnetic effects of LSDA on the total energy.
The addition of this term helps us to give a picture of the
degree to which the functionals reproduce Hund’s first rule.
Typical values of I for ionized lanthanides are 0.75 eV, so we
use this value for the calculations of this section. Further
discussion of the Stoner I is included in the Appendix.

Spin-orbit interaction is included in the form

ESO = �S� · L� → �
m�

SzLz, �28�

where the second form applies when only z components of
moments are treated, as is done in current implementations
of the LSDA+U method. Due to this restriction, LSDA+U
often does not produce the correct multiplet energies in the
atomic limit. The visible result in LSDA+U band structures
is splittings of occupied, or unoccupied, correlated suborbit-
als that can be as large as a few times J, and understanding
the splittings is not straightforward. For 4f systems these
splittings18,19 may not be of much interest unless one of the
correlated bands approaches the Fermi level. In heavy-
fermion compounds, for example, LSDA+U results are used
to infer which parts of the Fermi surface have a larger
amount of f character.20 The same effects �eigenvalue split-
tings� occur in 3d or 5f systems, however, where they are
expected to become more relevant but are masked by stron-
ger banding tendencies.

Here we consider values of � of 0 and 0.2 eV. The mag-
nitude of the spin-orbit interaction is not critical to the re-
sults; it mainly serves to break degeneracies. Without the
spin-orbit interaction, the ground state for any of the func-
tionals at a given N is degenerate with several other states.
For instance with N=6, the AMF functional has states with
Lz=1,Sz=0 and L=11,Sz=0 with the same lowest energy.

In Fig. 1 the ground states for both AMF and FLL with
U=8, J=1, and I=0.75 are shown. The FLL and Fl-nS �not
shown� schemes both reproduce Hund’s rules exactly with
these parameters. AMF does not reproduce Hund’s rules �in
fact penalizes magnetism� until I is increased to around 1.5,
which is somewhat larger than reasonable values of I. If one
expects LSDA+U to reproduce Hund’s rules, then the AMF
scheme performs rather poorly. For instance, at N=7, Hund’s
rules ask that all electrons be spin aligned, but the AMF
ground state has only one unpaired spin due to the magnetic
penalty appearing in Eq. �13�. With these parameter choices,
U / �2l+1�� I, so the AMF magnetic penalty wins over the

Stoner energy. This is likely to be the case for 3d transition
metals as well since U3d / �2l+1�
1 eV, but it may not be as
significant since I for 3d elements is larger.

We examine the energetics in more detail in Fig. 2, where
�E for the AMF and FLL functionals is plotted for every
configuration for N=7. The configurations fall into separate
lines for each spin moment M since Edc depends only on N
and M for both functionals. For the case of J=0, all the states
with a particular M value collapse to a single energy value
�the orbital index loses any impact�. This is shown with the
open squares. A value of I was chosen so that the cancella-
tion discussed in the previous paragraph is slightly broken.

If we examine the J=0 case first �the large open squares
in Fig. 2�, we see that the separation of states in FLL is much
larger than AMF �9 versus 3 eV�, with M =7 as the lowest
energy for FLL but highest for AMF. This is a direct conse-
quence of the magnetic penalty of AMF discussed previ-
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FIG. 1. �Color online� Angular momentum values of Sz, Lz, and
Jz of the lowest-energy state for �a� AMF �Fl-S� and �b� FLL, with
spin-orbit coupling. Parameter values are U=8, J=1, and I=0.75.
The AMF �Fl-S� curves do not follow Hund’s rules because the
Stoner parameter is too small. FLL follows Hund’s rules exactly
with these parameters.

-15 -10 -5

∆E
AMF

-10

-5

0

5

∆E
FL

L

M = 1
M = 3
M = 5
M = 7
J = 0 values

FIG. 2. �Color online� Shown here is �EFLL plotted vs �EFl-S

for each of the 3432 configurations of N=7 electrons using U
=8,J=1, I=0.75, all in eV. The ordering of states is shown for Fl-S
by counting from left to right and for FLL by counting from bottom
to top. Open squares show values for U=7 and J=0.
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ously. If I were increased above 1 eV �keeping the other
parameters fixed�, then AMF would begin to favor the M
=7 state by a small amount.

Once J is turned on, the degeneracy is split, and the con-
figurations with a particular M spread out around the J=0
value. The spread is especially large for the highly degener-
ate M =1 value �from −5 to 8 eV�, so that even if I were
larger than the typical LSDA value �in which case, with J
=0 AMF would favor a high-spin �HS� state� the large spread
of M =1 values would cause the low-spin �LS� states to be
favored in AMF. This spread is entirely coming from the EI
term and is independent of the double-counting choice. Here
we see for AMF a competition between J and I. J is actually
preferring a low-spin configuration in contrast to the conven-
tional wisdom that J increases the tendency for magnetism.
We see that this same tendency occurs in FLL, as for J=0 the
separation between M =7 and 1 states is 9 eV, but with J
=1 this separation is reduced to 4 eV. Since in FLL the Hub-
bard U does not penalize magnetic states the way AMF does,
the presence of J is not able to compete with I. This makes it
clear why FLL is generally accepted to perform better for
systems known to have high-spin states �e.g., Eu and Gd�.
Conversely, FLL may be less successful at modeling low-
spin states.

As mentioned previously, it is fairly common for theoret-

ical studies to replace U and J with effective parameters Ũ

and J̃. For any double-counting term chosen, using these
effective parameters will lower the energy of the high-spin
state relative to the low-spin state as compared to using U
and J directly. With orbitals that are not highly localized,
such as 3d or 5f state, it may be the case with FLL that the
reduction in the energy separation between high spin and low
spin caused by using U and J would allow for significant
competition between magnetism and kinetic energy in
LSDA+U.

We now have seen why and how FLL and AMF perform
differently in assigning a magnetic moment. This may be of
particular interest for studies of pressure-induced changes in
magnetic moment such as that seen in MnO �Ref. 5� without
changes in orbital M occupancy. Applications of LSDA+U
are more thoroughly discussed in Sec. VII A.

Shown in Fig. 3 are scatter plots of the energies of all
possible states for a given number of f electrons with integer
occupations. SO is neglected, as it makes very minor
changes to this picture by splitting some degeneracies. The
particle-hole symmetry of each functional is apparent. In
Fl-nS and FLL, the ground-state energy for N=7 is roughly 3
eV lower than the next level, which is the �degenerate�
ground states for N=6 and 8. This is almost entirely due to
the term depending on M2 �either the J term in Eq. �8� or the
Stoner term in FLL� because M is large and at its maximum
with seven spins aligned. In AMF low-spin states can be seen
at the low end of the range for configurations at each N; the
high-spin states for N=6 and 7 are disfavored by 6–7 eV. We
see that the trend where AMF favors low-spin configurations
and FLL favors high-spin configurations shown for N=7 in
Fig. 2 is present for all N. The large spread of values for
low-spin configurations �black and red circles� is seen clearly
for AMF as they appear in both the lowest-energy positions
and the highest-energy positions. The high-spin configura-
tions �large open symbols and triangles� are in the middle of
each distribution for N. For, e.g., N=5, counting from the
lowest energy, M =1 configurations are found first, followed
by M =3 configurations then the M =5 configurations are
found �with the trend reversing counting up to the highest-
energy states�. In FLL, the lowest-energy configurations for
N�7 are still the configurations with maximum spin for a
given N, and states with lower spins are found in succession.
Again using N=5 as an example, the M =5 configurations are
lowest in energy and then M =3 configurations are seen at
energies lower than M =1 states.

VII. DISCUSSION

In this paper we have tried to clarify the behavior of the
various functionals that are used in the LSDA+U method,
we have compared the functionals formally in certain limits,
we have presented the orbital potentials that arise, and we
have analyzed the total-energy corrections that LSDA+U
functionals apply to LSDA total energies given a set of oc-
cupation numbers. The Fl-nS functional which was originally
introduced strongly favors spin-polarized states as does the
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FIG. 3. �Color online� Scatter plot of all energies �E for all states in the �a� AMF �Fl-S�, �b� FLL, and �c� Fl-nS double-counting schemes
for U=8, J=1, and I=0.75 �FLL and AMF only�. Spin-orbit is neglected here. For AMF, low-spin states �black and red circles� appear as
lowest-energy configurations for all N, but this is not the case for FLL or Fl-nS. The dashed lines indicate the mean energy over configuration
for each N; note that the variation with N is much less for FLL than for the other two functionals.
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commonly used FLL functional. The other most commonly
used functional besides FLL, Fl-S �AMF�, has characteristics
that tend to suppress moment formation or reduce the mag-
nitude of the moment. When analyzed, this AMF functional
shows positive-energy penalties to magnetism that compete
with the magnetic tendencies of the LSDA functional, and
when J�0 nonmagnetic solutions become even more likely
to win out. We have provided a short analysis of the behavior
when J=0 is used. While this case is instructive, we advise
against its use; it is just as simple to do the full J�0 calcu-
lation.

When LSDA+U is applied to correlated insulators in the
strong-coupling regime, it provides a very good picture of
the system at the band-structure �effective one-electron�
level. The initial successes include the 3d transition-metal
monoxides MnO, FeO, CoO, and NiO, for which the LSDA
description is very poor. Other early successes included the
insulating phases of the layered cuprates that become high-
temperature superconductors when doped and the unusual
magnetic insulator KCuF3, which was the first case where
crucial orbital ordering was reproduced. LSDA+U is not a
satisfactory theory of single-particle excitations of such sys-
tems but nevertheless provides a realistic picture of the un-
derlying electronic structure.

The more interesting, and more difficult, cases now lie
between the strongly correlated limit of wide-gap magnetic
insulators and weakly correlated regime that is well de-
scribed by LSDA. Some of these are metals, some are un-
conventional insulators, and many lie near the metal-
insulator borderline. It is for these intermediate cases that it
becomes essential, if applying the LSDA+U approach, to
understand what the method is likely to do and especially to
understand the tendencies of the various choices of func-
tional. This is what we have tried to clarify in this paper. As
a summary, we will provide an overview of an assortment of
results that have appeared in the literature for systems that lie
somewhere in the intermediate correlation regime.

A. Examples of LSDA+U behavior from applications

1. Strongly correlated insulators

Cuprates. The insulating phase of the cuprate class of
high-temperature superconductors comprised the “killer app”
that served to popularize1,21 the LSDA+U method, and in
the intervening years the method has been applied to cu-
prates and other correlated insulators too many times to cite.
Simply put, in cuprates it produces the Cu d9 ion and accom-
panying insulating band structure.21,22 The hole resides in the
dx2−y2 orbital and is strongly hybridized with the planar oxy-
gen p� orbitals, as much experimental data was indicating.

MnO. Experimentally, MnO shows at room temperature a
moment collapse from M =5 to 1 �or less�, a volume col-
lapse, and an insulator-to-metal transition, near 100 GPa; this
is the classic Mott transition. Within LSDA, the moment
decreases continuously with decreasing volume,23 from the
HS state to a LS state. The insulator-to-metal transition oc-
curs at a much too low pressure �without any other change�.
A volume collapse is predicted, although the pressure is sig-
nificantly overestimated �150 GPa�.

The application of LSDA+U in its FLL flavor has been
applied and analyzed in detail5 and provides a different pic-
ture in several ways. The ambient pressure band gap is im-
proved compared to experiment. The volume collapse tran-
sition occurs around 120 GPa and is accompanied by a
moment collapse from M =5 to 1. The nature of this �zero-
temperature� transition is insulator to insulator, while the ex-
perimental data indicate an insulator-to-metal transition at
room temperature. The zero-temperature transition might in-
deed be insulator to insulator; such a phase transition would
be a type that LSDA+U should work well for. It is also
possible that the static mean-field approximation underlying
LSDA+U, which favors integer occupations and hence insu-
lating solutions, has a too strong tendency and fails to de-
scribe this transition. This question could be settled by study-
ing experimentally the Mott transition at low temperature.

Even more unexpected than the insulator-to-insulator as-
pect is the LSDA+U prediction that the low-spin state has an
unanticipated orbital occupation pattern,5 being one in which
every 3d orbital remains singly occupied �as in the high-spin
state�, but spin in two orbitals antialign with those in the
other three orbitals. This state is obtained simply from the
M =5 high-spin state by flipping the spins of two of the or-
bitals. The resulting density remains spherical, but the spin
density exhibits an angular nodal structure leading at the
same time to a high degree of polarization of the spin density
but with a low total moment �M =1�. This solution �being the
high-pressure ground state in LSDA+U� can be traced5 back
to the interplay between symmetry lowering due to the anti-
ferromagnetic order �cubic lowered to rhombohedral� and the
anisotropy part of the interaction �20�. The symmetry lower-
ing lifts the cubic grouping �t2g and eg manifolds�, thus al-
lowing a higher number of allowed occupation patterns.

The anisotropic part of the interaction is responsible5 for
Hund’s second rule ordering of states, which has the ten-
dency to increase the mutual distance of each pair of elec-
trons. If the overall energetics �band broadening and kinetic
effects� reduces the gain of energy due to spin-polarization,
then Hund’s first rule may become suppressed and the result
is a low-spin state. The anisotropic interaction is however not
influenced by this suppression since it is a local term propor-
tional to a parameter J. It will enforce a Hund’s second rule
like separation of the electrons under the low-spin condition
and thus can be shown to result exactly in the occupation
pattern observed for MnO. In a sense the low-spin state is an
example of Hund’s second rule without Hund’s first rule.

FeO, CoO, and NiO. Together with MnO, these classic
Mott �or “charge-transfer”� insulators have been prime appli-
cations of the LSDA+U method.24–27 The behavior of the
open 3d shell in these compounds has not been analyzed in
the detail that was done for MnO however.

2. Metals

Correlated metals involve carriers that can move; hence,
they invariably involve fluctuations in occupation number, in
magnetic moment, in orbital occupation, etc. It cannot be
expected that a self-consistent mean-field treatment such as
LSDA+U can answer many of the questions raised by their
behavior. However, there is still the question of whether
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LSDA+U can provide a more reasonable starting point than
LSDA alone in understanding these metals. In our opinion,
this remains an open question, but one for which some evi-
dence is available.

The Fe-Al system has provided one platform for the ap-
plication of LSDA+U to moderately correlated metals. The
systems treated include the Fe impurity in Al �Kondo system
experimentally� and the compounds Fe3Al, FeAl, and FeAl3.
The calculated behavior is too complex to summarize here.
The LSDA+U result will, generally speaking, be likely to
give a good picture of a Kondo ion when it produces an
integer-valent ion with a large value of U. Both FLL and
AMF functionals have been applied in this regime,28,29 with
substantially differing results, leading one to question
whether either is more realistic than simple LSDA. Results
are also sensitive to volume, i.e., whether using the experi-
mental lattice constant or the calculated equilibrium value,
and the calculated equilibrium is different from LSDA and
LSDA+U. One result was that, for moderate UFe

3–4 eV, AMF strongly reduces the magnetic moment,
while FLL does not.29 Another application found that the
magnetism disappeared within a certain range of intermedi-
ate values of UFe; that is, it was magnetic around small UFe
and also again at large coupling28 but nonmagnetic between.

3. Moderately strongly interacting oxides

Trying to address seriously the electronic structure of in-
termediate coupling oxides, which are often near the metal-
insulator transition, is a challenge that has begun to be ad-
dressed more directly. The peculiar NaxCoO2 system, which
becomes superconducting when hydrated �water intercalates
between CoO2 layers� is one example. One set of studies
showed no appreciable difference between FLL and AMF,30

with both predicting charge disproportionation on the Co ion
for x= 1

3 and 1
2 for U�2.5–3 eV. It is likely that this com-

pound presents a case where the interplay between LSDA
and U has effects that are not fully understood. Also, it is
unclear why there is so little difference between the FLL and
AMF functionals in this system.

The compound Sr2CoO4 is another example. Both func-
tionals show a collapse of the moment31 around U=2.5 eV
related to the metal–half-metal transition that occurs, but the
result for the moments �M�AMF�
M�FLL�� bears out the
tendency of AMF to penalize magnetic moments. The fixed
spin-moment calculation in Fig. 9 in Ref. 31 is instructive
too, showing the competition between LSDA magnetic en-
ergy and AMF magnetic penalty. Also it shows the creation
of local minima around M =integer values that LDA+U in-
troduces.

4. f electron materials

4f systems. These metals often display the correlated elec-
tron physics of a magnetic insulator at the band-structure
level. Background conduction bands provide the metallic na-
ture, while the correlated states have integer occupation. The
LSDA+U method seems to be a realistic method for placing
the f states closer to where they belong �away from the
Fermi level�. Gd is a good example, which has been studied

at ambient pressure and compared to photoemission data25

and magnetic dichroism data.32,33 The LSDA+U method has
also been applied up to extremely high pressure to assess
where the “Mott transition” in the 4f bands is likely to occur.
The LSDA+U method has also been applied to heavy-
fermion metals, for example, Cu and U compounds,34

PrOs2Sb12,
35 and YbRh2Si2.20 In such systems the LSDA

+U method may even provide a good estimate of which
itinerant states at the Fermi level are strongly coupled to the
localized f states, i.e., the Kondo coupling matrix elements.
These 4f systems may become heavy-fermion metals
�YbRh2Si2� or novel heavy fermion superconductors
�YbAlB4�, or they may remain magnetic but otherwise rather
uninteresting metals �Gd�.

5f systems. A variety of applications of the LSDA+U
method to 5f systems, and especially Pu, have been
presented.36–40 Given the complexity of the phase diagram of
elemental Pu, together with claims that dynamic correlation
effects must be included for any realistic description of Pu, a
more critical study of Pu would be useful.
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APPENDIX: CALCULATION OF THE STONER I for 3d
and 4f SHELLS

The Stoner parameter I is a well-established quantity. For
metals its value is obtained by a second-order expansion of
the LSDA xc energy around the nonmagnetic solution, re-
sulting in a Fermi-surface-averaged integral of the radial-
wave functions with the xc kernel.41 LSDA+U is usually
applied to describe insulating states, where the Fermi surface
vanishes. In the context of discussing the LSDA contribution
to the energy of a correlated d or f shell, it is more natural to
consider the energy contribution from the localized shell.
This leads to a derivation of the Stoner I similar to the for-
mulation of Janak41 but adapted to atomlike situations.

Seo42 presented the second-order perturbation theory of
the spin polarization in DFT, which results in explicit expres-
sions for the shell exchange parameter Inl that are applicable
to atomlike situations. In this work a numerical estimate for
Inl was derived indirectly from exchange splittings and spin-
polarization energies taken from DFT calculations. The idea
behind this perturbation theory, the expansion of the xc en-
ergy around the spherically averaged nonmagnetic density of
the shell under consideration, was also discussed in the ap-
pendix of Kasinathan et al.5 and leads to �Exc�− 1

4 InlM
2

with the shell-Stoner integral

Inl = −
1

2�
� K0�r��Rnl�r��4r2dr , �A1�
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K0�r�,r��� = � �2Exc

�m�r���m�r���
�

nspher,m=0

→ K0�r����r� − r��� .

�A2�

The last expression applies for a local approximation �viz.
LSDA� to Exc. K0�r� ,r��� is a magnetization-magnetization in-
teraction directly analogous to the second functional deriva-
tive of the DFT potential energy with respect to n�r��, which
is the Coulomb interaction e2 / �r�−r��� plus an “xc interaction”
arising from Exc.

For a more detailed discussion of the parameter Inl we
performed LSDA calculations for free atoms and ions and
explicitly calculated Inl from Eq. �A1�. It turns out that
�Exc�M� given above is by far the largest M-dependent term
of the energy expansion. The spin-polarization energy of iso-
lated atoms or ions with spherical M is well described by this
estimate with an error smaller than �5–10�%. The resulting
shell-Stoner integrals Inl have very similar values compared
to the ones obtained from the theory for the metallic situa-
tion. �Note, however, that there is a factor-of-2 difference in
the definition of the Stoner I in some of the publications.�

For the 3d transition element series we get values Inl rang-
ing from 0.62 eV for Sc to 0.95 eV for Zn �see Fig. 4�. These
values increase across the series by �0.15–0.20 eV, when
the exchange only LSDA is used, pointing to a reduction due

to �LDA-type� correlation effects when the full xc kernel is
used. For the 4f series the shell-Stoner integrals vary from
0.58 eV for Ce to 0.75 eV for Yb. The LDA correlation
effects amount to 10% of these values. The values obtained
depend on the choice of the reference system, which serves
as zeroth order in the functional expansion. For instance for
the 3+ ions of the 4f-series I4f is increased by �6–20�% with
respect to the neutral atoms.
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